Qt Mobility

Qt Mobility

e New APIs added to allow access to the unique features of
mobile devices

e First preview released 1st of December 2009

e First stable (1.0.0) released 27th of April, 2010

e Shipped in Nokia Qt SDK 1.0.1

e Current stable 1.0.2

e 1.1.0 available in Technology Preview (and adds 8
additional APIs)

|
II
QtOpenGl § QtOpenVG QtXmlPatterns Qt3Support
QtMobility APIs

—

QtNetwork

QtScript Phonon QtMultimedia

Installing Qt Mobility on a Device

e N900O
o Qt Mobility API binaries are installed automatically when
installing packages depending on them. One such
package is the qt-mobility-examples package.
o Install it though the application manage
e Symbian
o Install the gt-mobility sis file located in
path/NokiaQtSDK/Symbian/sis/qt_installer.sis
o Note, only the guys with the Windows version of the
Nokia Qt SDK has this directory.

Qt Mobility APls Qt Mobility 1.0.1

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Qt Mobility APIs

e Document Gallery
o API to navigate and query documents using their meta-data

e Feedback

o API enabling clients to control e.g. the vibration of the device

e Organizer
o Access to calendar, schedule etc.

e Camera
o Control and access to camera

e Telephony Event

o Access to the telephony event services.

Qt Mobility 1.1.0 tp

Currently we can access the following APls
in Nokia Qt SDK

Qt Mobility 1.0.1

Qt Mobility APIs

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

System Information API

e QSystemDevicelnfo

o Device information (battery, power state, input method type, IMEI, manufacturer,
profile status etc.)

e QSystemDisplayinfo

o Display information (color depth, brightness)

e QSysteminfo

o Various generation information (language, SW versions, etc.)

e QSystemNetworklInfo

o Network information (network name, mode, signal strength, etc.)

e QSystemScreenSaver
o Access to screen saver

e QSystemStoragelnfo

o Memory and disk information (disk types, free space, etc.)

Example using Mobility APls

#include <QtGui/QApplication>
#include <QtGui/QLabel>
#include <QSystemInfo>

using namespace QtMobility;
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QSysteminfo s;
QLabel *label = new QLabel("Current language is "+ s.currentLanguage() +
"and you're using Qt " + s.version(QSystemInfo::QtCore));
label->show();
return app.exec();

The QSysteminfo is defined in the
#include <QSysteminfo> header

Example using Mobility APls

#include <QtGui/QApplication>
#include <QtGui/QLabel>
#include <QSystemInfo>

using namespace QtMobility;
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QSysteminfo s;
QLabel *label = new QLabel("Current language is "+ s.currentLanguage() +
"and you're using Qt " + s.version(QSystemInfo::QtCore));
label->show();
return app.exec();

e The mobility APls are defined in the QtMobility
namespace. The using QtMobility makes the visible.
e Also the macro USE_QTM_ NAMESPACE can be used

Updating the

TEMPLATE = app
TARGET =
DEPENDPATH += .
INCLUDEPATH +=.
CONFIG += mobility
MOBILITY += systeminfo
SOURCES += main.cpp

.pro file

systeminfotest

Current language is da and you're using Qt 4.6.2

Mobility Modules

Each QtMobility API has its
corresponding value which has
to be added to MOBILITY. The
subsequent table lists the APls
and the corresponding values
that can be assigned to

MOBILITY.

Domain

Bearer Management

Contacts
Location
Multimedia
Messaging

Value

bearer
contacts
location
multimedia

messaging

Publish And Subscribepublishsubscribe

Service Framework

Sensors

System Information

Versit

Document Gallery
Telephony Events
Organizer

Tactile Feedback

serviceframework
SEeNnsors
systeminfo

versit

gallery

telephony
organizer

feedback

Qt Mobility APIs

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Service Framework

e Uniform service / Service
plug-in handling Fw
across multiple
platforms Service

e Allows functionality provider
reuse between
application.

e Platform e
iIndependent method
for finding, using
and implementing
services

Native
platform

T QObject

Qt Service Frameawork

T
|

| i

}F Saemnvica Interface

Service Provider

dll
i

Qt Mobility API

se0] Masmo 1| [indows | [0
checkend | foRessends) pRectera] Koaekend:

l

I I

I I

| |

I I

| I
A e Rt

S60 Maemo Windows

From Qt Mobility Whitepaper 1.0.1

Qt Mobility APIs

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Publish & Subscribe

e Easy to use IPC (Inter Process Communication)
mechanism.

e A publisher can use the API to make certain values
available or to notify subscribers about changes.

e Main classes involved
o QValueSpacePublisher
o QValueSpaceSubscriber

Publish & Subscribe

Values and key are arranged
In a directory like structure

[Device

> State "Starting"

— Memory 1000

Great concept for seperating responsability in our
applications.

e Engine / Ul

e MVC pattern

Qt Mobility APIs

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Messaging

e Access to SMS, MMS, Email, instant messaging capabilities

e Composition and manipulation of messages:
o QMessage
o QMessageAddress

e Accessing message accounts
o QMessageAccount
o QMessageFolder

e Sorting and filtering
o QMessageStore
o QMessageFilter

e Accessing message services
o QMessageService

Qt Mobility APIs

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Bearer Management

e Manages the connectivity state to the network

e Allows the user to start or stop network interfaces

e Info on if the device is online and how many available
interfaces there are

e Can support automatic roaming between cellular and WLAN
networks

e QNetworkConfigurationManager
o Access configuration and monitor state
e QNetworkConfiguration
o Represents a specific network configuration for a specific network
interface. (Note several configurations may exist for a single interface).
e QNetworkSession

o Control over system's access points. Start and stop access points
based on a specific configuration.

Qt Mobility APIs

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Contacts

N

Common Code
(housekeeping, actions, default functionality etc)

w

Contact Manager Engine
(plugin)

O ptional Stores

A Contact Manager has one
or more stores. If a manager
has maore than one stare, it is
assumed that the default
store presents the combined
collection of contacts. Each
Store is indivicually
addressable as well.

The manager also has
synchronous functions for

saving, retrieving etc.

Provides asynchronous
access to contact operations
(retrieving, saving, filtering
lists etc)

Predefined schema
describes comman types.
Specific managers may
extend the schema.

Detail definitions are a
template for specific contact
details. They describe the
types of data presentina
detail, whether you can have

Contact

more than one of these
tetails in a contact, and
whetheryou can create or
modify a detail of this type.

A Cortacts has one or mare
details, aswell as a unique
id. Youcanguery what

actions are available for this
contact.

Each detail has:

* a definition id (*PhoneMumber”)

* some metadata (home, work, mobile etc)
* s0me data ('555-1234")

A Group has zero ar more
contactids, and some

Contact Group

metadata (name etc)

From Qt Mobility Whitepaper 1.0.1

Contacts

Get phone number:

QContactManager cm; // instantiate the default manager
QList<QContact> allContacts = cm.contacts();
QContact firstContact = allContacts.first();

gDebug() << "The first contact has a phone number:" << firstContact.detail<QContactPhoneNumber>().number();

Save detail:

QContactPhoneNumber newPhoneNumber; // create the detail to add
newPhoneNumber.setNumber ("12345"); // set the value(s) to save
firstContact.saveDetail (&newPhoneNumber); // save the detail in the contact
cm.saveContact (&firstContact); // save the contact in the manager
cm.removeContact (firstContact.localId()); // remove the contact from the manager

Source and more examples: http://doc.qgt.nokia.com/gtmobility-1.1-tp/contactsusage.html

Qt Mobility APIs

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Location

e The classes in the API consist of containers for the

Basic Location Qt API

S60 Location AP
Wrapper

Maemo Location
API Wrapper

Location Acquisition
API

Maemo Location
AP

NMEA Backend

Serial NMEA
Source

Qt Software

Source: Qt Mobility White Paper

positional data and classes that manage the sources of the

data

Location

Qt Mobility APIs

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Multimedia

e Playing audio & video of various formats

e Recording audio

e Playing and managing of an FM radio

e QtMultimedia will eventually replace Phonon API

e Access of multimedia services with minimal code and
maximal flexibility

Qt Mobility APIs

e System Information
o Discover system related information and capabilities

e Service Framework
o Discover and instantiate arbitrary services

e Publish & Subscribe

o Read item values, navigate through and subscribe to change notifications

e Messaging
o Messaging services, including SMS and email

e Bearer Management
o Controlling the system's connectivity state

e Contacts
o Enabling clients to request contact data from local and remote backends

e Location
o Receiving location data using arbitrary data sources

e Multimedia
o Play and record media, and manage a collection of media content

e Sensor
o Accessing the acceleration, xyz-rotation and orientation of the device

Sensor API

e The API can be used to poll sensors for data, or for the
sensors to push data as they arrive
e QSensor derived classes provide access to input from

various sensor:
QAmbientLightSensor

QAccelerometer
QCompass

QMagnetometer QOrientationSensor

QProximitySensor QRotationSensor _
X

QTapSensor

Sensor API

3 steps to start using it

m accelerometer = new QAccelerometer (this);
connect (m_accelerometer, SIGNAL (readingChanged()), this, SLOT (readingChanged())):;

m accelerometer->start();

QAccelerometerReading *r = m accelerometer->reading () ;

greal x = r—->x(); £ Dialog s £ FallDetector
7 \a abc ¥
qreal y = r_>y () Z Please add required notification
qreal Z = r—>2z () ’ contact information.
First Name:
ui->xvalue->setText (tr ("%1") .arg(x)); S?MN_
ui->yvalue->setText (tr("%1") .arg(y)); Do
ui->zvalue->setText (tr ("%$1") .arg(z)); Email Address: FALL DETECTED

john.doe@example.com|

Sensing device acceleration Detected fall (height: 0.56m)
Failed to retrieve current position
Sending notification message...
Notification sent successfully

Exit | Options Exit | Options

Platform Compatibility

Color Explanation
- A functional backend for the API on the platform is complete.
A functional backend for the API on the platform is being worked however it is not functionally complete.
A functional backend for the API on the platform is being worked on. At this point it is far from functionally complete or there is no platform specific code inside QDF source code.
]

A functional backend for the API on the platform is not being worked on. It is possible for others to implement and integrate support.

Tier 1 Platforms

Primary platforms are the main focus of Mobility API. There platforms are frequently tested by our unit test suite and other internal testing tools. However, the timeline of
availability for each backend is subject to change.

Tier 2 Platforms

Secondary platforms include future direction of Qt Mobility API. Contributions to these platforms are welcome.

Tier 1 Platforms Tier 2 Platforms
:“::uﬁty S60 3rd S60 3rd
o™ | R | | R | smeens | wenes | M| M| umec | wecoss
Pack 1 Pack 2
Service Framework (in-process) FINAL
Messaging FINAL
Bearer Management FINAL
Publish and Subscribe FINAL
Contacts FINAL
Location FINAL
Multimedia FINAL
System Information FINAL
Sensors FINAL
Versit(vCard) FINAL
Versit(Organizer) TP
Camera TP
Service Framework(OOP) TP
Organizer TP
Landmarks 1P
Document Gallery TP
Maps/Navigation TP
Feedback TP
Telephony Events TP

Source: http://doc.qt.nokia.com/qtmobility-1.1-tp/

