
Qt Mobility

Qt Mobility

New APIs added to allow access to the unique features of
mobile devices
First preview released 1st of December 2009
First stable (1.0.0) released 27th of April, 2010
Shipped in Nokia Qt SDK 1.0.1
Current stable 1.0.2
1.1.0 available in Technology Preview (and adds 8
additional APIs)

Installing Qt Mobility on a Device

N900
Qt Mobility API binaries are installed automatically when
installing packages depending on them. One such
package is the qt-mobility-examples package.
Install it though the application manage

Symbian
Install the qt-mobility sis file located in
path/NokiaQtSDK/Symbian/sis/qt_installer.sis
Note, only the guys with the Windows version of the
Nokia Qt SDK has this directory.

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Qt Mobility 1.0.1

Qt Mobility APIs
Document Gallery

API to navigate and query documents using their meta-data
Feedback

API enabling clients to control e.g. the vibration of the device
Organizer

Access to calendar, schedule etc.
Camera

Control and access to camera
Telephony Event

Access to the telephony event services.

Qt Mobility 1.1.0 tp

Qt Mobility 1.0.1

Currently we can access the following APIs
in Nokia Qt SDK

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

System Information API

QSystemDeviceInfo
Device information (battery, power state, input method type, IMEI, manufacturer,
profile status etc.)

QSystemDisplayInfo
Display information (color depth, brightness)

QSystemInfo
Various generation information (language, SW versions, etc.)

QSystemNetworkInfo
Network information (network name, mode, signal strength, etc.)

QSystemScreenSaver
Access to screen saver

QSystemStorageInfo
Memory and disk information (disk types, free space, etc.)

Example using Mobility APIs

#include <QtGui/QApplication>
#include <QtGui/QLabel>
#include <QSystemInfo>

using namespace QtMobility;
int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QSystemInfo s;
 QLabel *label = new QLabel("Current language is "+ s.currentLanguage() +
 " and you're using Qt " + s.version(QSystemInfo::QtCore));
 label->show();
 return app.exec();
}

The QSystemInfo is defined in the
#include <QSystemInfo> header

Example using Mobility APIs

#include <QtGui/QApplication>
#include <QtGui/QLabel>
#include <QSystemInfo>

using namespace QtMobility;
int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QSystemInfo s;
 QLabel *label = new QLabel("Current language is "+ s.currentLanguage() +
 " and you're using Qt " + s.version(QSystemInfo::QtCore));
 label->show();
 return app.exec();
}

The mobility APIs are defined in the QtMobility
namespace. The using QtMobility makes the visible.
Also the macro USE_QTM_NAMESPACE can be used

Updating the .pro file

TEMPLATE = app
TARGET =
DEPENDPATH += .
INCLUDEPATH += .
CONFIG += mobility
MOBILITY += systeminfo
SOURCES += main.cpp

Mobility Modules

Each QtMobility API has its
corresponding value which has
to be added to MOBILITY. The
subsequent table lists the APIs
and the corresponding values
that can be assigned to
MOBILITY.

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Service Framework

Uniform service /
plug-in handling
across multiple
platforms
Allows functionality
reuse between
application.
Platform
independent method
for finding, using
and implementing
services

From Qt Mobility Whitepaper 1.0.1

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Publish & Subscribe

Easy to use IPC (Inter Process Communication)
mechanism.
A publisher can use the API to make certain values
available or to notify subscribers about changes.

Main classes involved

QValueSpacePublisher
QValueSpaceSubscriber

Publish & Subscribe

Values and key are arranged
in a directory like structure

Example:
An incoming phone call
IM messaging updates
Battery status

Great concept for seperating responsability in our
applications.

Engine / UI
MVC pattern

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Messaging

Access to SMS, MMS, Email, instant messaging capabilities

Composition and manipulation of messages:
QMessage
QMessageAddress

Accessing message accounts
QMessageAccount
QMessageFolder

Sorting and filtering
QMessageStore
QMessageFilter

Accessing message services
QMessageService

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Bearer Management
Manages the connectivity state to the network
Allows the user to start or stop network interfaces
Info on if the device is online and how many available
interfaces there are
Can support automatic roaming between cellular and WLAN
networks

QNetworkConfigurationManager

Access configuration and monitor state
QNetworkConfiguration

Represents a specific network configuration for a specific network
interface. (Note several configurations may exist for a single interface).

QNetworkSession
Control over system's access points. Start and stop access points
based on a specific configuration.

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Contacts

From Qt Mobility Whitepaper 1.0.1

Contacts

Get phone number:
QContactManager cm; // instantiate the default manager
QList<QContact> allContacts = cm.contacts();
QContact firstContact = allContacts.first();
qDebug() << "The first contact has a phone number:" << firstContact.detail<QContactPhoneNumber>().number();

QContactPhoneNumber newPhoneNumber; // create the detail to add
newPhoneNumber.setNumber("12345"); // set the value(s) to save
firstContact.saveDetail(&newPhoneNumber); // save the detail in the contact
cm.saveContact(&firstContact); // save the contact in the manager
cm.removeContact(firstContact.localId()); // remove the contact from the manager

Save detail:

Source and more examples: http://doc.qt.nokia.com/qtmobility-1.1-tp/contactsusage.html

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Location

The classes in the API consist of containers for the
positional data and classes that manage the sources of the
data

Source: Qt Mobility White Paper

Location
#include <QGeoPositionInfo>
#include <QGeoPositionInfoSource>

// Neccessary for Qt Mobility API usage
QTM_USE_NAMESPACE

class LocationInfo : public QObject
{
Q_OBJECT

public:

LocationInfo (QObject* parent = 0) : QObject(parent)
{
QGeoPositionInfoSource * src = QGeoPositionInfoSource ::createDefaultSource (this);
if (src)
{
connect(src, SIGNAL (positionUpdated (QGeoPositionInfo)), this,
SLOT(updatePosition (QGeoPositionInfo));
connect(src, SIGNAL (updateTimeout ()), this, SLOT(updateTimeout ()));
src->requestUpdate (5000); // Start request for actual position
}
}

private slots:

void updatePosition (const QGeoPositionInfo & info)
{
qDebug() << “Current position : ” << info;
}

void updateTimeout ()
{
// Current location could not be retrieved within the specified timeout of 5 seconds.
qWarning(“Failed to retrieve current position.”);
}
};

Source: Forum Nokia Wiki

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Multimedia

Playing audio & video of various formats
Recording audio
Playing and managing of an FM radio
QtMultimedia will eventually replace Phonon API
Access of multimedia services with minimal code and
maximal flexibility

Qt Mobility APIs
System Information

Discover system related information and capabilities
Service Framework

Discover and instantiate arbitrary services
 Publish & Subscribe

Read item values, navigate through and subscribe to change notifications
Messaging

Messaging services, including SMS and email
Bearer Management

Controlling the system's connectivity state
Contacts

Enabling clients to request contact data from local and remote backends
Location

Receiving location data using arbitrary data sources
Multimedia

Play and record media, and manage a collection of media content
Sensor

Accessing the acceleration, xyz-rotation and orientation of the device

Sensor API

The API can be used to poll sensors for data, or for the
sensors to push data as they arrive
QSensor derived classes provide access to input from
various sensor:

QAccelerometer
QAmbientLightSensor

QCompass
QMagnetometer QOrientationSensor

QProximitySensor QRotationSensor

QTapSensor

Sensor API

m_accelerometer = new QAccelerometer(this);
connect(m_accelerometer, SIGNAL(readingChanged()), this, SLOT(readingChanged()));

m_accelerometer->start();

 QAccelerometerReading *r = m_accelerometer->reading();

 qreal x = r->x();
 qreal y = r->y();
 qreal z = r->z();

 ui->xvalue->setText(tr("%1").arg(x));
 ui->yvalue->setText(tr("%1").arg(y));
 ui->zvalue->setText(tr("%1").arg(z));

3 steps to start using it

Source: http://doc.qt.nokia.com/qtmobility-1.1-tp/

